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LIQUID CRYSTALS, 1991, VOL. 10, No. 5, 691-702 

Effect of persistent flexibility on the isotropic, nematic and 
columnar ordering in a self-assembling system 

by REINHARD HENTSCHKE 
Max-Planck-Institut fur Polymerforschung, 

Postfach 3148, 6500 Mainz, Germany 

(Received 13 May  1991; accepted 16 June 1991) 

Concentrated solutions of reversibly assembling amphiphilic molecules often 
exhibit a variety of liquid-crystalline mesophases due to the asymmetry of their 
aggregates. For strongly elongated rod-like micelles flexibility may significantly 
influence the relative stability ofthese phases. This question is addressed for a simple 
model for a self-assembling system of monodisperse linear rod-like aggregates 
which are considered to be persistent flexible. Analogously to a recent calculation 
for a self-assembling system in which the rod-like aggregates are assumed to be 
perfectly rigid, persistent flexible aggregates may exhibit the same isotropic- 
nematic-columnar progression of phases. However, increasing the flexibility 
reduces the concentration range over which the nematic phase is stable. For 
sufficiently flexible aggregates the nematic phase is abandoned altogether and a 
direct isotropic-columnar transition occurs. 

1. Introduction 
Many amphiphiles in aqueous solution exhibit lyotropic liquid-crystalline meso- 

phases, characterized by various types of orientational (e.g. nematic) and translational 
(e.g. smectic or columnar) order. The observed ordering can often be understood in 
terms of the steric interactions within a particle population consisting of monomers 
and polydisperse asymmetric aggregates of variable size. The main difference with 
ordinary lyotropic liquid crystals is the inherent coupling of reversible aggregate 
assembly and long range order. 

Here we are interested in a sub-class of these systems, where rod-like aggregates are 
reversibly assembled via linear aggregation, i.e. the aggregate cross section contains 
only one monomer. Recently, Taylor and Herzfeld [l] have carried out a theoretical 
study for this case, taking into account orientational and positional ordering as well as 
polydispersity. For weak aggregation, i.e. when the average aggregate size is small, they 
obtain a direct isotropic-columnar transition (or an isotropic-crystalline for very weak 
aggregation) with increasing amphiphile concentration. However, if the aggregation is 
sufficiently strong, i.e. when the aggregates are on average sufficiently elongated, they 
always find a stable nematic phase intervening between the isotropic and the columnar 
phase. Because their theory assumes completely rigid aggregates, it is interesting to 
study effects due to flexibility which are expected to become important for strong 
aggregation, when the aggregates are sufficiently elongated. 

Recently, we have extended the Khokhlov-Semenov approach to long range 
orientational order in solutions of inert monodisperse persistent flexible main chain 
polymers [2] by including hexagonal columnar ordering [3]. The present calculation is 
a further extension to include reversible assembly of monodisperse linear aggregates. 
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692 R. Hentschke 

The isotropic-nematic transition of the monodisperse self-assembling system has 
previously been studied for rigid aggregates by Briehl and Herzfeld [4,5] and Gelbart 
et al. [6,7], and for persistent-flexible aggregates by Odijk [S]. The main result of the 
present inclusion of the columnar phase for the monodisperse reversibly assembling 
system, as for the inert monodisperse system [3], is that the nematic phase is squeezed 
out between the isotropic low concentration phase and the columnar high con- 
centration phase with increasing flexibility, until, finally, a direct isotropic-columnar 
transition occurs. In the case of rigid rod-like aggregates studied by Taylor and 
Herzfeld [l], the nematic phase disappears when the aggregates are short, i.e. when 
aggregation is weak and the aggregates are essentially spheroidal. The present 
calculations suggest that the nematic phase may also become unstable due to the 
micellar flexibility of long aggregates, i.e. when aggregation is strong. In addition to the 
phase diagram, this work reports results for the aggregate size, the deflection length, the 
orientational order parameter and the columnar inter axial separation between 
aggregates at the different transitions. 

2. Coexistence equations for the isotropic, nematic, and hexagonal columnar phases 
The self-assembling system studied here consists of monodisperse labile aggregates 

modelled as long slender continuously bend-elastic (i.e. persistent flexible) cylindrical 
rods of unit diameter, which interact via hard core steric repulsions. It is well known 
that hard core interactions alone can induce orientationalC91 and translational [lo] 
order in systems of highly asymmetric particles. In the following, the focus is on the 
relative stability of the isotropic, the nematic and the columnar phase as function of the 
aggregate flexibility. It is reasonable to concentrate on these types of phases for rod-like 
aggregates because other types of transitional order (e.g. smectic order) are disfavoured 
due to the polydispersity of the aggregates in realistic self-assembling systems. The free 
energy (per unit volume and k,T) describing the present simplified system can be 
written as 

f=f* +fex-vo, +L,,. (1) 

(2) 
where cis the particle concentration, q is a constant, L is the variable aggregate length 
in units of the aggregate diameter, and o denotes the orientational free energy which 
depends on the aggregate flexibility. The term -5lnLarises from the inclusion of 
rotational (- 7i) and translational (- 3i) degrees of freedom, in addition to mixing, in 
analogy with the work of Gelbert et al. [6 ,7 ] .  Here and in the following, contributions 
due to the particular shape of the rod ends (e.g. flat ends or hemispherical ends) are 
omitted. 

The first term is given by 

f *  = c( - q +In c - 5 In L +  o), 

Previously, it was shown that 0 is well described by the function 

isotropic case 
In a - 1 + z(3z + 2r)/(z + r )  + 0 (exp (- 4 2 ) )  nematic and columnar case 

(3) 

i" a(a, L) = 

with 
L a-1 
P 12 

z=- __ and r=ln4-1, 
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Ordering in a self-assembling system 693 

where P is the persistent length divided by the rod diameter [ll]. The variational 
parameter l / a  is a measure for the width of the angular distribution of tangential unit 
vectors along the contour of the rod. Usually, in the nematic and columnar phase this 
distribution, which is approximated using the Onsager trial function [9], is sufficiently 
narrow to justify the omission of additional terms containing exponentials in - c1. In 
the limit of stiff rods, L/P-tO, (T reduces to the usual Onsager form In a- 1 [9], whereas 
in the limit of worm-like rods, L/P-+co and (T goes like (1/4)La/P. The quantity P/a  is 
termed the deflection length, because it is the characteristic length scale on which the 
contour of the persistent flexible aggregate is deflected in the direction of the director 
(cf. [ 123). If P/a is of the order of or smaller than L, the rods can no longer be considered 
rigid. It is important to realize that the deflection length is significantly smaller than the 
persistence length, because usually a is already quite large at the nematic transition 
(a 2 10) and quickly increases with increasing concentration. Expression (3) for (T in the 
nematic and columnar case is an interpolation between the limits including the leading 
terms and the corresponding first correction terms [l 11. 

The second term in equation (1) denotes the hard core excluded volume 
interactions. Unfortunately, translationally ordered phases usually occur at con- 
centrations beyond the validity of a second virial approach. The following calculation 
therefore utilizes an approximate expression forfex-vol which is sufficiently accurate at 
high volume fractions. The expressions forfex-vol used here were derived previously for 
rigid rods, but they are approximately valid for persistent flexible polymers as well, 
because hard core steric repulsion governing the excluded volume manifests itself on a 
scale of the order of the aggregate diameter, on which the aggregates are considered to 
be rigid cylinders [3]. 

For the isotropic and nematic case, Lee 1131 has shown for rigid rods thatf,,-,,,, can 
be approximated over a wide range of concentrations by combining the Carnahan- 
Starling description of the hard sphere fluid with a functional scaling that decouples 
orientational and translational degrees of freedom for elongated particles. The 
accuracy of this approximation is comparable to the accuracy of scaled particle theory. 
Lee's expression forfex-vol, which is the one used here, can be shown to perform well for 
persistent flexible rod-like particles [ 111. 

For the case of columnar ordering, on the other hand, we have shown previously 
[14,15] that fex-vo, in a columnar phase of aligned rigid rods can, to a good 
approximation, be written in terms of two contributions,f;,$, and f :$sta,, where the 
former represents the non-ideal contribution to the free energy of a one dimensional 
fluid of hard lines and the latter represents the non-ideal contribution to the free energy 
of a two dimensional crystal of discs. The physical picture is that of cylindrical rods 
confined to move inside hexagonal tubes of diameter A, which form a hexagonal array. 
It is important to note that A, which is also the mean perpendicular separation of the 
long particle axes in the columnar phase, is not an independent model parameter but is 
determined by optimizing the free energy. Thus, in order to obtain consistency with the 
underlying physical picture, this optimization has to yield values for A S 2  in a stable 
columnar phase to prevent the doubling-up of rods inside the tube. A detailed 
discussion of this model for positional ordering is given in [ 14,151. 

The explicit expressions for fex-vol for the three different types of ordering are 
given by 

(4) 
U( 1 - 3~/4)/( 1 - u)' [4 + LP(U)] isotropic and nematic case 
-In [ 1 - (u/u,,) A2] -In [ 1 - l / A l z  columnar case. fex-"0, = c 
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694 R. Hentschke 

Here u is the aggregate volume fraction (note that uacL), and 

(5 )  

where I, is a Bessel function. In the limit u-0 and for Lp(a)>> 1, the expression forfex-vol 
describing the isotropic and nematic case reduces to the well-known Onsager result for 
rigid, slender rods [9]. In the columnar case, the first term off,,-,,, is the exact non-ideal 
contribution to the free energy of a one dimensional hard particle fluid. The quantity 
uA2/uCp, where uCp = n/(2,/3), is the corresponding one dimensional volume fraction. 
The second term represents a cell model description of the non-ideal contribution to the 
free energy of a two dimensional hexagonal crystal of hard discs. Note that the 
argument of the logarithm is the ratio of the free volume to the cell volume. Note also 
that the two contributions to the columnarfe,~,,, are coupled via A. 

In the nematic case, (T as well asfe,-,,, depend on a, where, as mentioned previously, 
l / a  is a measure for the nematic confinement of the thermal contour undulations. On 
the other hand, in the columnar case (T depends on a whereasf,,-,,, depends on the 
width A of the columnar tube. However, here the nematic confinement is merely 
replaced by the hard walls of the tube. Therefore, there ought to be an approximate 
relation A=A(a),  which allows us to express A in terms of a in the above columnar 
expression for f~x -vo l .  This relation was derived previously using a simple scaling 
argument which yields 

isotropic case (a = 0) 
P ( 4  = i’ 212(2a)/sinhza nematic case, 

A = 1 + P ( K / u ) ~ ’ ~ ,  (6) 
where K = 0(1) is an undetermined constant [3]. As pointed out in [3], equation (6) is 
derived under the assumption that L is significantly larger than the deflection length 
Pja in the columnar phase to avoid end-effects. 

Finally, the third term in equation (1) is the internal free energy, which, in analogy 
to [l], is given by a phenomenological one parameter expression of the form 

where bagg and h,,, denote the volume of the single aggregate and the volume of the 
monomer, respectively (note that cbagg = u and that bagg/bmon equals the number of 
monomers in an aggregate), Thus, the bracketed quantity is the number of contacts in 
the linear aggregate, which is multiplied by the decrease in free energy per contact - CD 
(in units ofk,T). In [ 11, it is assumed that CD varies inversely with temperature, however, 
the exact dependence of CD on temperature is unknown, and in the following CD simply 
assumes the role of a model parameter. 

The globally stable free energy is calculated by minimizing the free energy with 
respect to L and a. Note that c and L are related via c=constant u/L. For the isotropic 
case (a=O and a = O )  we obtain the simple result 

1 - 3uj4 
6 +W + In u +4u ~ 

( 1 - U ) Z  

where 0’ = @ - q. Otherwise L and a are determined via the two coupled equations 
given by 

rz2 1 - 3uj4 
(1 -u )2  ’ 

O =  -61n L+5+W+lna-- +In 0 + 4u ___ 
( z  + r)’ (9) 
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Ordering in a self-assembling system 695 

a L 2r2 + 32’ + 6rz 1 - 3u/4 ap 
12 P (z+r)’ ( I - ~ ) Z  aa’ 

O = l + - -  +aLu- - 

in the nematic case or by 

rz2 
0=-61nt+5+W+lna-- 

(z + r)’ 
U ) + 1 -G A3, 

in the columnar case. (Numerical solutions are easily found using, for instance, the 
AMOEBA algorithm described in [16] or the FindRoot routine of [17].) 

The solutions of equations (9H12) determine the globally stable free energy. It is 
important to realize that the idealized description of columnar ordering in terms of a 
one dimensional fluid confined to impenetrable tubes imposes constraints which force 
the isotropic-columnar transition as well as the nematic-columnar transition to be first 
order [14]. However, here the focus is on the relative stability of the phases as a function 
of the model parameters rather than on the details of the transitions themselves. The 
equilibrium phase diagram can then be calculated in the usual fashion employing the 
equality of the osmotic pressure and the chemical potential across the transition. The 
osmotic pressure is calculated using the relation 

where Vis the total volume (cf. [lS]). Using equation (13), x can be written as 

71 = .n* + .nnex+& (14) 

x*=C (15) 

where 

and 

(16) 
*(4 + Lp(a))u(2 - u)/(l - u ) ~  isotropic and nematic case 
-(I -(ucp/w/A2))-1 columnar case. ~ c x - v o l =  c 

The solute chemical potential follows from 

a Vf af 1 
a va,, au p =--=f+ (1 - u)  -= - ((1 - u).n + f ), 

where Kgg( = Vu) is the total aggregate volume (cf. [18]). 

3. Results and discussion 
Figure 1 shows the phase diagram in the @’-u plane for three different persistence 

lengths P and for two different values of the parameter IC. The main feature is that the 
nematic phase, which decreases in width with decreasing persistent length for the two 
larger values of P, becomes unstable for the smallest value of P, and a direct isotropic- 
nematic transition occurs. The vanishing of the nematic phase with increasing 
flexibility is not too surprising in light of our previous investigation of the phase 
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Figure I .  The phase diagram as a function of the growth parameter W and the volume fraction u 
for three different persistence lengths P. Capital letters denote the isotropic phase (I), the 
nematic phase (N), and the hexagonal columnar phase (DJ. Shaded areas indicate phase 
coexistence. Solid lines correspond to ic = 3.0 and dashed lines to ic = 3.5. Note that the 
isotropic-nematic transition does not depend on ic. 
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Ordering in a self-assembling system 697 

behaviour of inert monodisperse persistent flexible rods. In [3], we find independent of 
Lthat if P is small enough (the exact value depends on IC) there is no stable nematic 
phase in the range of validity of the model. For fixed P, the phase boundaries in the self- 
assembling system recede to smaller volume fractions as @' increases. The isotropic- 
nematic transition occurs because increasing @' also increases the length of the 
aggregates L. For the nematic-columnar transition, however, Taylor and Herzfeld [ 13, 
using the same cell model description for the columnar phase of rigid rod-like 
aggregates, find that the concentration at which the nematic-columnar transition 
occurs is virtually independent of @. Inclusion of flexibility, on the other hand, 
obviously imposes a strong @' dependence (and, therefore, also a strong CD dependence) 
on the location of the nematic-columnar transition for @' 5 25. Finally, increasing the 
parameter K, which is not determined a priori by this theory, shifts the nematic- 
columnar transition to higher volume fractions. This is because according to equation 
(6) increasing IC for fixed tube width A implies stronger orientational constraints, which 
in turn reduce the stability of the columnar phase. The two different values of K: used in 
figure 1 roughly represent the range of reasonable IC values. This range is based on 
fitting the osmotic pressure data obtained for poly(y-benzyl-L-glutamate) with a 
theoretical osmotic pressure calculated according to this model for inert rod-like 
particles 131. Note that IC should be independent of the particular system as long as the 
inter particle interactions are well-described in terms of hard core repulsions. 

In the present work, no attempt has been made to find the exact location of the 
isotropic-nematic-columnar triple point in terms of the persistence length. In a 
realistic system, P and especially W will have strong and different dependencies on 
temperature ( e g  [ 191). In addition, polydispersity, which is omitted here, will also 
affect the quantitative aspects of the qualitative effects discussed in this work. Thus, a 
detailed investigation of the triple point cannot yield much useful information on this 
level. However, for the corresponding inert monodisperse system, the dependence of 
the triple point on Land P is discussed in some detail in [3]. 

Figure 2 shows the aggregate length L plotted along the phase boundaries in figure 
1. Note that in the present work, the range of CD' is bound from below by the condition 
that L should be sufficiently large ( L k 1 0 )  to avoid end-effects. Generally, the 
dependence of In L on @' is almost linear. In addition, comparing equivalent curves for 
P = 100 and 1000 shows that there is only a weak dependence of L on P along the phase 
boundaries. It is worth noting, however, that this dependence is significantly stronger 
for L as a function of u keeping @' constant. In this case, increasing flexibility 
significantly diminishes the growth of the aggregates, which is discussed in detail for the 
nematic phase in [S] (as in [8], we find for the present model that L increases 
monotonically with u). It is also worth noting that besides flexibility, the translational 
and rotational terms in the free energy (cf. equation (2)) [6] (and soft repulsive 
interactions between the aggregates [20] reduce aggregate growth. This is important in 
order to avoid exaggerated and unphysical aggregate growth in the orientationally 
ordered phases (e.g. [S]). 

As we have mentioned, the quantity P/a is the deflection length and the ratio L/(P/a) 
rather than LIP is the relevant measure for the importance of the aggregate's flexibility. 
Only if a L / P c  1 can the rods be considered as rigid [I 21. In figure 3, aL/P is plotted 
along the nematic and columnar phase boundaries in figure 1. Apparently, aL/P is 
never small so that flexibility is always important. Interestingly, this is the case even for 
the small values of CD', where the smallness of LIP (cf. figure 2) may lead us to believe 
otherwise. 
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Figu 

10' 10' 1 o3 1 0" 
L 

re 2. The aggregate length L (in units of the aggregate diameter) along the phase 
boundaries in the three panels of figure 1. Solid iines correspond to K = 3-0 and dashed lines 
to K = 3.5. The letter coding is chosen so that a indicates the isotropic-nematic transition 
and b the isotropic-columnar and nematic-columnar transitions. The phase boundaries 
are indicated by the indices: I, isotropic; N, nematic; and D,, hexagonal columnar. Letters 
with a prime label the dashed lines. 
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Ordering in a self-assembling system 699 

1 oo 10' 1 o2 10' 1 o4 
a L I P  

Figure 3. The aggregate length L divided by the deflection length P/a along the nematic and 
columnar phase boundaries in figure 1. Solid lines correspond to K = 3.0 and dashed lines 
to K =  3.5. The letter coding is chosen so that a indicates the isotropic-nematic transition 
and b the isotropic-columnar and nematic-columnar transitions. The phase boundaries 
are indicated by the indices: N, nematic; D,, hexagonal colmnar. Letters with a prime label 
the dashed lines. 
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A 
Figure 5. The width A of the columnar tube (in units of the aggregate diameter) along the 

columnar phase boundaries in figure 1. Solid and dashed lines correspond to K =  3.0 and 
IC = 3.5, respectively. The letter coding distinguishes curves obtained for the three different 
persistence lengths: A, P = 10; B, P =  100; and C, P =  1000. 

Figure 4 shows the orientational order parameter S= 1/2 (3 cos' 0- l) ,  where 0 is 
the angular contour deviation from the director, along the nematic and columnar phase 
boundaries in figure 1. Comparing the plots of S for P= 100 with the plots of S for 
P= 1000 it is apparent that near the transition the stiffer rods are orientationally more 
ordered, as we might expect. Note that the orientational order along the phase 
boundaries decreases somewhat with increasing CD'. An exception to this behaviour is 
the minimum of the nematic order parameter for P = 100. Regardless of the value of P, 
however, we find pronounced orientational ordering along the columnar phase 
boundaries. 

Finally, figure 5 shows the tube width A as a function of W along the columnar 
phase boundary of the isotropic-columnar and the nematic-columnar transitions in 
figure 1. A increases with increasing @' corresponding to the shift of these transitions to 
lower volume fractions with increasing CD'. As we have mentioned, the physical picture 
of the columnar phase in terms of hard tubes is a good description only if A 5 2. Figure 5 
shows that this is indeed the case except for the small value of IC (i.e. IC = 3.0) for P = 100 
and 1000 when WZ23. However, since A decreases rapidly with increasing volume 
fraction, the condition A S 2  is generally fulfilled for ~ 2 0 . 2 3 .  This number can be 
understood in terms of the quantity ucAz/uCp (cf. equation (4)), which is the one 
dimensional volume fraction along the tube at the columnar phase boundary u,. 

is found to be close to unity (> 095 for the results shown here), which indicates 
that in the columnar phase the end-to-end distance between aggregates is always small. 

The author wishes to thank Dr E. B. Zhulina and Professor J. Herzfeld for a critical 
reading of the manuscript. 
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